Mutant INS-Gene Induced Diabetes of Youth: Proinsulin Cysteine Residues Impose Dominant-Negative Inhibition on Wild-Type Proinsulin Transport

نویسندگان

  • Ming Liu
  • Leena Haataja
  • Jordan Wright
  • Nalinda P. Wickramasinghe
  • Qing-Xin Hua
  • Nelson F. Phillips
  • Fabrizio Barbetti
  • Michael A. Weiss
  • Peter Arvan
چکیده

Recently, a syndrome of Mutant INS-gene-induced Diabetes of Youth (MIDY, derived from one of 26 distinct mutations) has been identified as a cause of insulin-deficient diabetes, resulting from expression of a misfolded mutant proinsulin protein in the endoplasmic reticulum (ER) of insulin-producing pancreatic beta cells. Genetic deletion of one, two, or even three alleles encoding insulin in mice does not necessarily lead to diabetes. Yet MIDY patients are INS-gene heterozygotes; inheritance of even one MIDY allele, causes diabetes. Although a favored explanation for the onset of diabetes is that insurmountable ER stress and ER stress response from the mutant proinsulin causes a net loss of beta cells, in this report we present three surprising and interlinked discoveries. First, in the presence of MIDY mutants, an increased fraction of wild-type proinsulin becomes recruited into nonnative disulfide-linked protein complexes. Second, regardless of whether MIDY mutations result in the loss, or creation, of an extra unpaired cysteine within proinsulin, Cys residues in the mutant protein are nevertheless essential in causing intracellular entrapment of co-expressed wild-type proinsulin, blocking insulin production. Third, while each of the MIDY mutants induces ER stress and ER stress response; ER stress and ER stress response alone appear insufficient to account for blockade of wild-type proinsulin. While there is general agreement that ultimately, as diabetes progresses, a significant loss of beta cell mass occurs, the early events described herein precede cell death and loss of beta cell mass. We conclude that the molecular pathogenesis of MIDY is initiated by perturbation of the disulfide-coupled folding pathway of wild-type proinsulin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impaired Cleavage of Preproinsulin Signal Peptide Linked to Autosomal-Dominant Diabetes

Recently, missense mutations upstream of preproinsulin's signal peptide (SP) cleavage site were reported to cause mutant INS gene-induced diabetes of youth (MIDY). Our objective was to understand the molecular pathogenesis using metabolic labeling and assays of proinsulin export and insulin and C-peptide production to examine the earliest events of insulin biosynthesis, highlighting molecular m...

متن کامل

Dominant negative pathogenesis by mutant proinsulin in the Akita diabetic mouse.

Autosomal dominant diabetes in the Akita mouse is caused by mutation of the insulin 2 gene, whose product replaces a cysteine residue that is engaged in the formation of an intramolecular disulfide bond. These heterozygous mice exhibit severe insulin deficiency despite coexpression of normal insulin molecules derived from three other wild-type alleles of the insulin 1 and 2 genes. Although the ...

متن کامل

Chaperone-Driven Degradation of a Misfolded Proinsulin Mutant in Parallel With Restoration of Wild-Type Insulin Secretion

In heterozygous patients with a diabetic syndrome called mutant INS gene-induced diabetes of youth (MIDY), there is decreased insulin secretion when mutant proinsulin expression prevents wild-type (WT) proinsulin from exiting the endoplasmic reticulum (ER), which is essential for insulin production. Our previous results revealed that mutant Akita proinsulin is triaged by ER-associated degradati...

متن کامل

PDI reductase acts on Akita mutant proinsulin to initiate retrotranslocation along the Hrd1/Sel1L-p97 axis

In mutant INS gene-induced diabetes of youth (MIDY), characterized by insulin deficiency, MIDY proinsulin mutants misfold and fail to exit the endoplasmic reticulum (ER). Moreover, these mutants bind and block ER exit of wild-type (WT) proinsulin, inhibiting insulin production. The ultimate fate of ER-entrapped MIDY mutants is unclear, but previous studies implicated ER-associated degradation (...

متن کامل

Naturally Occurring Genetic Variation Influences the Severity of Drosophila Eye Degeneration Induced by Expression of a Mutant Human Insulin Gene

Dominant negative mutations in the insulin gene are the second most common cause of permanent neonatal diabetes. However, variation in severity and penetrance of neonatal diabetes, as in other complex genetic diseases, cannot be accounted for by known “disease” mutations. In a novel approach to this problem, we have utilized the genetic tools available in Drosophila to model the effects of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010